
2
0
17
.x
C
o
A
x.
o
r
g

DESIGNING MUSIC
WITH MUSEBOTS

Lisbon
Computation
Communication
Aesthetics
& X

Abstract
Musebots are pieces of software that autonomously
create music, collaboratively with other musebots.
Since the development of the musebot protocol, the
author has created several generative music and col-
laborative systems using these musical agents. This
paper describes how the desired musical results in-
fluenced the design of the musebots themselves.
Rather than presenting the latest musebot system —

— Moments — as a system description, the author
describes the musical decisions that prompted the
design, and re-design, of the musebots themselves.

Keywords
Generative Music
Musical Metacreation
Musical Composition
Musebots
Musical Agents

ARNE EIGENFELDT
arne_e@sfu.ca

Simon Fraser University
Vancouver, Canada

183 1. INTRODUCTION

Generative music offers the opportunity for the continual reinterpretation of a
musical composition through the design and interaction of complex processes
that can be rerun to produce new artworks each time. While generative art has
a long history (Galanter 2003), the application of artificial intelligence, evolu-
tionary algorithms, and cognitive science has created a contemporary approach
to generative art, known as metacreation (Whitelaw 2004); musical metacrea-
tion (MuMe) looks at all aspects of the creative process and their potential for
systematic exploration through software (Pasquier et al. 2016).

One useful model borrowed from artificial intelligence is that of agents, spe-
cifically multi-agent systems. Agents have been defined as autonomous, social,
reactive, and proactive (Wooldridge 1995), similar attributes required of perfor-
mers in improvisation ensembles. Musebots (Bown et al. 2015) offer a structure
for the design of musical agents, allowing for a communal compositional appro-
ach (Eigenfeldt et al. 2015) as well as a unified model.

Musebot ensembles, consisting of a variety of agents reflecting the varying
musical aesthetics of their creators, have been successfully presented in North
America, Europe, and Australia. In these ongoing installations, each ensemble
has been limited to five minute performances, after which the ensemble exits
and the next ensemble begins. While this limitation can be seen as an oppor-
tunity to feature as wide a variety of musebots as possible — as of this writing,
there are over seventy-five unique musebots — it raises some questions.

If the musebot ensemble is a proof-of-concept, then it is certainly successful:
musebots interact and can self-organise, producing novel output that can be
surprising and arguably valued — thus attaining a mark of computational crea-
tivity (Boden 2009). However, after listening to any one ensemble for longer
than a few minutes, one recognizes musical limitations: the interactions between
musebots remain at the musical surface (i.e. harmony, rhythm, density). Moving
beyond this duration, the successful outcome is no longer dependent upon inter-
action, but expands to include structure. It is for this reason that many MuMe
practitioners have remained as part of the creative process, whether as musi-
cians interacting with an interactive system, or as operators, triggering global
changes when the surface has become too predictable or static (Eigenfeldt et
al. 2016). I have used musebots in a variety of artworks in the past two years
(Eigenfeldt 2016a, Eigenfeldt 2016b), and have become their main evangelist.
Although one of the main desires of the musebot project was to provide a col-
laborative framework that allowed sharing of ideas and code, I have found the
need to move forward independently. In doing so, I hope to not only create inter-
esting and valuable artworks, but, through their documentation, I hope to entice
others to join me in the development and extension of the musebot paradigm.

2. MUSICAL AGENTS AND MUSEBOTS

The potential of agent-based musical creation was explored early in the history
of computer music (Wulfhorst et al. 2003, Murray-Rust and Small 2006), spe-
cifically in their potential for emulating human-performer interaction. The au-
thor’s own initial investigation into multi-agent systems is described elsewhere
(Eigenfeldt 2007). Within MuMe, the established practice of creating autonom-
ous software agents for free improvised performance (Lewis 1999) has involved

184 idiosyncratic, non-idiomatic systems, created by artist-programmers (Yee-King
2007, Rowe 1992). While musical results from these systems can be appreciat-
ed by other composers, sharing research has been difficult, due to the lack of
common approaches (Bown et al. 2013).

Musebots are pieces of software that autonomously create music, collabora-
tively with other musebots. Musebots were designed to alleviate some of these is-
sues, as well as provide a straight forward infrastructure for development (Bown
et al. 2015). A defining goal of the musebot project is to establish a creative plat-
form for experimenting with musical autonomy, open to people developing cut-
ting-edge music intelligence, or simply exploring the creative potential of gen-
erative processes in music. The musebot protocol is, at its heart, a method of
communicating states and intentions, sending networked messages established
through a collaborative document via OSC (Wright et al. 1997). A Conductor
serves as a running time generator, as well as a hub through which all messages
pass. The Conductor also launches individual musebots via curated ensembles.

Musebot ensembles have been presented as continuous installations at a varie-
ty of festivals and conferences, the results of which have been described else-
where (Eigenfeldt et al. 2015). These ensembles have modeled improvisational
explorations, albeit with the potential for generative harmonic progressions. Cu-
ration of ensembles have consisted of combining musebots based upon their
musical function (i.e. a beat musebot, a bass musebot, a pad musebot, a melody
musebot, and a harmony generating musebot). A contrasting ensemble might
involve combining several noise musebots (see table 1).

The information shared between musebots have tended to be surface details,
such as a current pool of pitches, density of onsets, and volume. Although having
virtual performers audibly agree upon such parameters suggests musically suc-
cessful machine listening, these levels of interaction become mundane surpris-
ingly quickly; the more subtle interactions that occur in human improvisation
ensembles, and their development over time, have not yet been successfully mo-
deled within musebot ensembles.

Several musebot developers participated in ProcJam 15 , and devoted a week
to exploring the potential for musebots to broadcast their intentions for the im-
mediate future. While the results heightened the perception of machine listening,
they were not able to move beyond the generation of musical surface.

2.1. From Self-Organisation to Composition

My own hesitation to more deeply embrace improvisational approaches has to
do with my training as a composer; compositional thought suggests a top-down

Table 1
Musebot types available
online (http://musical
metacreation.org/muse
bot-test-suite/)

http://musicalmetacreation.org/musebot-test-suite/
http://musicalmetacreation.org/musebot-test-suite/
http://musicalmetacreation.org/musebot-test-suite/

185 approach, a pre-performance organisation in which musical structure elicits lar-
ge scale change. Traditional narrative and dramatic musical forms, based upon
tension and release, result in hierarchical structures that are seemingly impos-
sible to negotiate or self-organise. For example, getting agents to agree upon a
central section (i.e. a chorus), and deciding how to progress towards that section
through an adequate build of tension without a top-down approach, is beyond
my comprehension. While I have explored the use of pre-generated structural
templates (Eigenfeldt and Pasquier 2013), I found this unnecessarily restrictive
outside of the exact model considered (i.e. electronic dance music).

I have proposed an alternative to traditional narrative structures for musical
generation (Eigenfeldt 2016b), specifically what Stockhausen called Moment-

-form (1963). Kramer suggests that such non-teleological forms had already been
used by composers such as Stravinsky and Debussy (Kramer 1987), while I have
described the use of Moment-form in ambient electronic music (Eigenfeldt 2016b).
Moment-form offers several attractive possibilities for generative music, inclu-
ding the notion that individual moments can function as parametric containers.
Just as Stockhausen obsessively categorised and organised his material (Smalley
1974), the parameterisation of musical features by applying constraints upon the
generative methods can delineate the moments themselves.

3. MOMENTS

Moments is my first generative work that explores Moment-form in generative
music through the use of musebots. While the work may have future musebots
contributed by the MuMe community, thus far all musebots for Moments have
been my own. Moments exists in two separate versions: the original for two Dis-
klavier pianos (hereafter referred to as M2016), in which musebots send MIDI
data to the mechanical pianos; a second version in which it generates all audio
through Ableton Live (hereafter referred to as M2017). When describing con-
sistent elements between the two versions, I will refer to it simply as Moments.
Due to the use of acoustic instruments, M2016 has been presented as a live
concert work; M2017, lacking any visual element, has been presented as an au-
dio installation.

3.1. Structural Musebots

As mentioned, musebots have demonstrated the potential to self-organise. How-
ever, a decision was made to approach Moments compositionally, and generate
an entire musical form prior to each performance. This allows for at least one
important benefit: a pre-cognition by all agents of the upcoming structure. Know-
ing a section is, for example, two minutes in duration, allows musebots to plan
their activity within that time.

Moments uses structural musebots, which do not actually generate sound, as
well as those that generate audio directly, or via MIDI. A ParamBOT generates
sections (moments) within a user determined compositional duration. Kramer
suggests that proportional relationships between moment durations are integral
to their success, because global coherence cannot come from progression be-
tween, or order of, moments (Kramer 1978). Adhering to Stockhausen’s own
preference for golden ratio relationships, durations are generated by continu-
ally dividing the requested performance duration using ratios of 2:3 (see figure

186 1), ensuring that the longest section is less than three minutes, and the shortest
is more than fifteen seconds. These durations are then shuffled to avoid predict-
ability, and allow for shorter moments to adjoin longer moments.

In order for moments to be contrasting, each moment consists of varying pa-
rameter levels. Sectional values, either stable or dynamic during a section, are
generated stochastically for the following parameters: speed (tempo), activity
 level (number of events), voice density (number of voices per part), complexity,
and volume. Pitch is treated differently between the two versions: figure 1 dis-
plays the varying pitch range suggestions used in M2016, while M2017 employs
a more complex timbral model, discussed later.

Because harmony should remain static within a moment, a single pitch class
 set is generated for the entire composition by a PCsetBOT. Subsets of the larger
set are selected for various moments, based upon the section’s complexity, as
suggested by the ParamBOT. The PCsetBOT broadcasts the pitch class sets for
the entire composition, thereby allowing musebots to navigate through sectional
divisions.

3.2. Performance Musebots

As with all of my multi-agent systems, individual agents have a unified general
design, but operate differently based upon internal variations due to varying at-
tributes; these attributes function very much like personalities (Eigenfeldt and
Kapur 2008). In the case of Moments, these attributes are:

• Impatience: how long an agent is willing to be inactive;
• Persistence: how long an agent will stay active;
• Vitality: how willing an agent is to add other voices, and how
active to be overall;
• Consistency: the amount of variation an agent will attempt,
including the potential to play across sections;
• Compliance: how willing an agent is to restrict itself to the
ParamBOT’s requests;
• Repose: a preference to perform in sparser, or denser, sections.

Fig. 1
A portion of the
ParamBOT, displaying
the request for a ten
minute composition’s
speed, activity level,
and pitch range.
Vertical lines indicate
the five section divisions;
horizontal lines indicate
parameter change
over time.

187 These internal attributes can be set randomly with each performance, or through
an ensemble score, discussed later. While the ParamBOT determines many of
the governing parameters for a section, musebots still must decide upon how to
interpret these suggestions. Earlier musebot designs consisted of a large num-
ber of individual musebots that behaved in a consistent manner, or style. For
Moments, it was deemed more practical to design a single musebot that could
react in different ways depending upon the given musical parameters. Thus, the
M2016 musebots are provided with a variety of performance styles, and they
select from these styles based upon their suitability for the current state. For
example, a narrow pitch range rules out large intervalic chordal playing styles,
while fast speeds rule out rapid repeated notes.

The playing styles for M2016 are:

• pointillist: stochastic pitch, onset, and duration selection within the
requested constraints;
• désordre: based upon Ligeti’s Piano Etude #1, a study in polyrhythms
and contrasting left / right hand pitch fields;
• blocky: five to ten note chords;
• morse: a rhythmic motive, favoring a limited number of pitches;
• arpy: large intervalic leaps, traveling up and down the keyboard;
• trills: alteration of two or three pitches;
• remembering: florid melodic shapes in groupings based upon a repeat-
ing rhythmic pattern;
• keith: rhythmic repetition in left hand of limited pitch sets;
• herbie: held chords in left hand, and complex melodic trajectories in
right hand;
• olivier: “blue green” chords reminiscent of Messiaen’s Vocalise from
his Quartet for the End of Time.

A fundamental aspect of musebots is their ability, and requirement, to com-
municate their current state through messages. Rather than broadcast their per-
formance style, the M2016 musebots analyze their own playing, and transmit a
feature analysis (see figure 2). The other musebot then attempts to match these
features to what it understands about its own playing styles, and has the option
of switching its current style. While both musebots share the same stylistic ana-
lysis — and thus should be able to translate the current features into actual
sty-les — the decision was made to allow for misinterpretation of the other muse-
bot’s style based upon its transmitted features.

Fig. 2
Musebot self-analysis.

188 In other words, what the musebot believes it is doing may not be what the
musebot is actually doing. This ambiguity is exploited in M2016, in that the muse-
bots will attempt to match one another’s playing, based upon their own internal
beliefs, creating variation within a given moment.

Given the wide variety of possible states for each moment, as suggested by
ParamBOT and interpreted by the two musebots in M2016, each moment is
usually quite distinct while retaining sectional consistency. Changes between mo-
ments display Kramer’s notion of discontinuity.

3.3. Translating Musebots

Between July and December 2015, M2016 was performed three times in con-
cert, each with a ten minute duration. While presenting generative works in con-
cert is always risky — there is never a guarantee that musical agents will pro-
duce optimal output within a set duration — the structure of Moments enforces
variety between a moment’s consistency and discontinuity between adjacent sec-
tion, producing a satisfying balance between moderate predictability (due mainly
to the musebot’s limited number of playing styles) and surprise (due to the com-
plexity of the overall system). Thus, it seemed natural to take the next step, and
eliminate the constraints placed upon timbre, and have the system entirely deter-
mine how it sounded.

All of my generative systems, when creating their own audio, have had severe
limitations placed upon their timbral output: in most cases, they have been for-
ced to choose from a pre-determined collection of samples or synthesis patches.
While one could argue that, given five musebots choosing from synthesis col-
lections of five patches each, the potential combination of timbres is quite large,
the main reason for the constraint is to guarantee some level of predictability
and musical success. M2017 would attempt to remove this constraint, and select
from over 1,200 sounds available in Ableton Live.

3.4. Patch Analysis

In order to create generative methods for timbral selection, the system requi-
res some knowledge about the library of available sounds. A machine learning
algorithm was created to analyze every synthesizer patch in the Ableton Live
library. A script was written to play every patch @ MIDI notes 36, 60, and 84;
analysis was done on the amplitude and spectrum over a five second duration.

Space does not permit a detailed description, other than to state that the re-
sulting database allowed for requests to be made (see table 2) in order to pro-
vide a sorted list of appropriate patches. For example, a musebot could request
a list of sustained patches (sustain = 1.0) with medium release (release > 0.5), a
clear harmonic spectrum (harmonic >0.9), fewer harmonics (harmonic < 0.2),
and not very much timbral change (flux < 0.2).

Table 2
Machine learning and pos-
sible patch requests
in M2017.

189 3.5. Spectral Models

Due to the homogeneous nature of the piano timbre across its pitch range, M2016
could exploit a stochastic pitch range request. The aesthetic model of that work —

— 20th century piano music — further allowed for such generation.
M2017 instead uses a model of ambient electronica, requiring pitch selection

that incorporates spectrum. Twenty five tracks of ambient electronica, by Chris-
topher Bissonnette, Loscil, and Marsen Jules were analysed using 24 band Bark
analysis (Eigenfeldt and Pasquier 2010), once per second. Spectral slices were
stored in a database; those that were below the track average (i.e low ampli-
tudes usually found in fade-in and fade-out), as well as those that were similar
to existing slices, were discarded. Analysis of 25 tracks resulted in 670 unique
spectral slices.

The ParamBOT selects two slices at random from the spectral slice database,
then generates interpolations between them, the number of which depends upon
the number of sections for a new composition. These new spectral slices are
then shuffled, and are considered the spectral targets for each section. The sli-
ces can be considered “real-world” models; the interpolations provide enough
variation in timbre between sections, yet enough consistency so as to maintain
the perception of a single musical composition.

3.6. Design versus reality: heuristics at play

Using the request system to determine suitable timbres did not, unfortunately,
prove to be musically dependable. This may have been due to what the ma-
chine-learning algorithm was tasked with learning, or it may have been due to
the ambiguity of information given to the selection algorithm. For example, as-
ked to provide timbres suitable to be used as drones — sustained, harmonic,
with enough timbral flux to remain sonically interesting — the system could sug-
gest very plain timbres (i.e. a bassoon) or unsuitable (i.e. a dance-synth patch
with a dramatic vibrato). Other examples included selecting sample-based pa-
tches at the extremes of their pitch range that resulted in audible loops, or
combing two timbres that would both be considered “foreground”, and thus

Fig. 3
Bark analysis of Bisson-
nette’s A Wild Tonic in
the Rain. Brightness indi-
cates higher amplitude
for that Bark band.

Fig. 4
A spectral slice from Bis-
sonnette’s A Wild Tonic in
the Rain, displaying ampli-
tudes of 24 Bark bands for
a one second period.

fr
eq

ue
nc

y
(2

4
Ba

rk
 b

an
ds

)

time

frequency (24 Bark bands)

am
pl

itu
de

190 detracting from one another. These problems could be solved by further refi-
nement of the audio features in the analysis, but it seems that this problem bor-
ders upon computational aesthetic judgement: attempting to distinguish why cer-
tain timbres could, or could not, be used in certain circumstances.

As a composer, rather than a computer scientist, I feel such research is beyond
my immediate goals. Other, more “brute-force” methods would include com-
piling a list of unusable patches, but such a method defeats the purpose of auto-
mating the timbre selection. Lastly, attempting to adjust the timbre once a selec-
tion is made (i.e. altering the filter cut-off or vibrato) is problematic, as each
patch in the Ableton Live database consists of a variety of synthesis methods
and algorithms: creating a secondary database of available synthesis parameter
settings for each patch does not seem to be an elegant solution (for now).

Instead, two additional audio musebots were created, whose timbre could be
more precisely controlled. A resonant sample-based player (KitsilanoBot), with
a library of field recordings and soundscapes, was created, in which the indi-
vidual resonant frequency bands is tuned to match the section’s pitches and
overall spectrum (described below). An “intelligent” granular synthesis player
(GenoaBot) was also coded, and provided with a large library of instrumental
samples; sample-selection is based upon the overall timbre of the section, guar-
anteeing suitable and consistent timbral performance in every frequency range.
The Ableton Live synthesis musebots (LondynBots, SienaBots), utilize the request
system, and can safely serve as foreground timbres. Similar to the initial musebot
installations, ensembles were created so as to provide variety between compo-
sitions, including the possibility of specifying individual musebot attributes (see
table 3).

3.6. Design versus reality: heuristics at play

Because all parameter information, including spectrum, is generated and com-
municated prior to the performance, the audio musebots can negotiate which
bark bands they will individually cover for individual sections. This negotiation is
preceded by deciding within which section musebots will be active, based upon
the section’s activityLevel (broadcast by ParamBot), balanced by an individual
musebot’s vitality. Musebots broadcast this information as intentions, and other
musebots can alter their own plans based upon this shared information.

During the extensive listening to generated output for the earlier M2016, it
seemed that a musebot’s compliance attribute could be used to obfuscate the
ParamBot’s requests; in other words, allowing musebots some flexibility in res-
ponding to the overall structural parameters. One example of this in M2017 can
be seen in the “claiming” of Bark bands: if a musebot broadcasts its intention
to play in bark band 3 (MIDI notes 55-62), no other musebot would be allowed
to use those pitches. However, when it comes to deciding which pitches to play
from within its intended bark bands, musebots with low compliance attribute
can wander outside their limits. This necessitated further communication to the

Table 3
Audio Musebots
in Moments2017

191 ensemble: not just what a musebot intends to do, but what it is actually doing.
A similar adjustment is required during performance when a new section be-
gins. Due to the complexities of negotiation, it is possible for a section to occur
in which no musebots are active. Musebots with high compliance attributes are
the first to test this case; if they find no other musebots active, they test their
own vitality attribute — essentially a musebot’s energy level — to see if it should
play in the section. Because there is no guarantee that a musebot exists with
high compliance and high vitality, there remains the possibility for a section’s
continued silence. Rather than overriding this possibility, this result, however
unlikely, is allowed to exist in order to avoid the creation of a collection of heu-
ristic settings that limits the explored space; or, as was suggested to me, differ-
entiating between fixing mistakes and allowing unintended intentions (which may
be interpreted as surprise).

4. CONCLUSION AND FUTURE WORK

Musebots offer a flexible method for designing musical agents, but their suc-
cessful implementation requires an iterative process no different than more tra-
ditional modes of artistic creation. Just as one cannot expect to combine a ran-
dom assortment of human musicians into a functioning musical ensemble, mu-
sebots need to be designed, and redesigned, in order to perform adequately
within a specific musical environment. Just as musicians may rehearse to achieve
their best — and arguably predictable — performance, fine tuning musebots so
as to limit their output to best match the aesthetic aims of a generative work
remains a necessity.

M2016 demonstrates the potential for moment form as a structural contai-
ner for generative procedures, and a means for musebots to generate surface
features while being constrained by formal elements. M2017 demonstrates the
potential to apply metacreative procedures to timbral organization; however, a
great deal remains to be done in this regard. Paramount is an extension of the
notion of intention versus actuality: a musebot may claim certain timbral bark
bands, for example, but its actual timbre may be much greater. For the muse-
bots to know exactly what they are producing, audio analysis of their own output
will be required. Whether this is done by individual musebots, or by a structural
musebot “listener” which then transmits current states and required adjustments,
remains a research foci.

Acknowledgements. The author wishes to acknowledge the Social Sciences and
Humanities Research Council of Canada (SSHRC), the Simon Fraser University
Cultural Unit, the School for the Contemporary Arts, and the Generative Media
Project at Simon Fraser University.

REFERENCES

Boden, Margaret. Computer models of
creativity. AI Magazine 30:3, 2009.

Bown, Oliver, Arne Eigenfeldt, Aengus
Martin, Benjamin Carey, and Philippe
Pasquier. The musical metacreation week-
end: challenges arising from the live pres-
entation of musically metacreative systems.
Proceedings of the Musical Metacreation
Workshop, Boston. 2013.

Bown, Oliver, Benjamin Carey, and Arne
Eigenfeldt. Manifesto for a Musebot
Ensemble: A platform for live interactive
performance between multiple autono-
mous musical agents. Proceedings of the
International Symposium of Electronic
Art, Vancouver, 2015.

Eigenfeldt, Arne. The Creation of Evolution-
ary rhythms within a Multi-Agent Networked
Drum Ensemble. Proceedings of the Inter-
national Computer Music Conference,
Copenhagen, 2007.

Eigenfeldt, Arne, and Ajay Kapur.
An Agent-based System for Robotic Musical
Performance. Proceedings of the New Inter-
faces for Musical Expression Conference,
Genoa, 2008.

Eigenfeldt, Arne, and Philippe Pasquier.
Real-time timbral organisation: Selecting
samples based upon similarity. Organised
Sound 15:02, 2010.

Eigenfeldt, Arne, and Philippe Pasquier.
Evolving structures for electronic dance
music. Proceedings of the 15th conference
on Genetic and evolutionary computation,
Amsterdam, 2013.

Eigenfeldt, Arne, Oliver Bown, and Ben-
jamin Carey. Collaborative Composition
with Creative Systems: Reflections on the
First Musebot Ensemble. Proceedings of the
International Conference on Computational
Creativity, Park City 2015.

Eigenfeldt, Arne, Oliver Bown, Andrew
Brown, Toby Gifford. Flexible Generation
of Musical Form: Beyond Mere Generation.
Proceedings of the International Conference
on Computational Creativity, Paris, 2016.

Eigenfeldt, Arne. Musebots at One Year:
A Review. Proceedings of the Fourth Inter-
national Workshop on Musical Metacreation,
Paris, 2016a.

Eigenfeldt, Arne. Exploring Moment-form in
Generative Music. Proceedings of the Sound
and Music Computing Conference, Hamburg,
2016b.

Galanter, Philip. What is Generative Art?
Complexity theory as a context for art
theory. Generative Art Conference,
Milan, 2003.

Kramer, Jonathan. Moment form in twen-
tieth century music. The Musical Quarterly
64:2, 1978.

Lewis, George. Interacting with latter-day
musical automata. Contemporary Music
Review, 18:3, 1999.

Murray-Rust, David, Alan Smaill, and Mi-
chael Edwards. MAMA: An architecture for
interactive musical agents. Frontiers
in Artificial Intelligence and Applications
141:36, 2006.

Pasquier, Philippe, Arne Eigenfeldt, Oliver
Bown, and Shlomo Dubnov. An Introduc-
tion to Musical Metacreation. Computers in
Entertainment (CIE) 14:2, 2016.

Rowe, Robert. Machine composing and
listening with Cypher. Computer Music
Journal, 16:1, 1992.

Smalley, Roger. ‘Momente’: Material for
the Listener and Composer: 1. The Musical
Times 115:1571, 1974.

Stockhausen, Karlheinz. Momentform: Neue
Beziehungen zwischen Aufführungsdauer,
Werkdauer und Moment. Texte zur Musik
1, 1963.

Whitelaw, Mitchell. Metacreation: Art and
Artificial Life. MIT Press, 2004.

Wooldridge, Michael, and Nicholas
Jennings. Intelligent Agents: Theory and
Practice. Knowledge Engineering Review,
10:2, 1995.

Wright, Matthew, and Adrien Freed.
Open Sound Control: A New Protocol for
Communicating with Sound Synthesizers.
Proceedings of the International Computer
Music Conference, Thessaloniki, 1997.

Wulfhorst, Rodolfo, Lauro Nakayama, and
Rosa Maria Vicari. A multiagent approach
for musical interactive systems. Proceedings
of the second international joint conference
on Autonomous agents and multiagent sys-
tems. ACM, 2003.

Yee-King, Matthew. An automated music
improviser using a genetic algorithm dri-
ven synthesis engine. Applications of Evo-
lutionary Computing, Springer Berlin
Heidelberg, 2007.

