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Abstract 
Musebots are pieces of software that autonomously 
create music, collaboratively with other musebots. 
Since the development of the musebot protocol, the 
author has created several generative music and col- 
laborative systems using these musical agents. This 
paper describes how the desired musical results in-
fluenced the design of the musebots themselves. 
Rather than presenting the latest musebot system — 

— Moments — as a system description, the author 
describes the musical decisions that prompted the 
design, and re-design, of the musebots themselves.  
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183 1. INTRODUCTION

Generative music offers the opportunity for the continual reinterpretation of a 
musical composition through the design and interaction of complex processes 
that can be rerun to produce new artworks each time. While generative art has 
a long history (Galanter 2003), the application of artificial intelligence, evolu-
tionary algorithms, and cognitive science has created a contemporary approach 
to generative art, known as metacreation (Whitelaw 2004); musical metacrea-
tion (MuMe) looks at all aspects of the creative process and their potential for 
systematic exploration through software (Pasquier et al. 2016).

One useful model borrowed from artificial intelligence is that of agents, spe-
cifically multi-agent systems. Agents have been defined as autonomous, social, 
reactive, and proactive (Wooldridge 1995), similar attributes required of perfor- 
mers in improvisation ensembles. Musebots (Bown et al. 2015) offer a structure 
for the design of musical agents, allowing for a communal compositional appro- 
ach (Eigenfeldt et al. 2015) as well as a unified model.

Musebot ensembles, consisting of a variety of agents reflecting the varying 
musical aesthetics of their creators, have been successfully presented in North 
America, Europe, and Australia. In these ongoing installations, each ensemble 
has been limited to five minute performances, after which the ensemble exits 
and the next ensemble begins. While this limitation can be seen as an oppor-
tunity to feature as wide a variety of musebots as possible — as of this writing, 
there are over seventy-five unique musebots — it raises some questions. 

If the musebot ensemble is a proof-of-concept, then it is certainly successful: 
musebots interact and can self-organise, producing novel output that can be 
surprising and arguably valued — thus attaining a mark of computational crea-
tivity (Boden 2009). However, after listening to any one ensemble for longer 
than a few minutes, one recognizes musical limitations: the interactions between 
musebots remain at the musical surface (i.e. harmony, rhythm, density). Moving 
beyond this duration, the successful outcome is no longer dependent upon inter-
action, but expands to include structure. It is for this reason that many MuMe 
practitioners have remained as part of the creative process, whether as musi-
cians interacting with an interactive system, or as operators, triggering global 
changes when the surface has become too predictable or static (Eigenfeldt et 
al. 2016). I have used musebots in a variety of artworks in the past two years 
(Eigenfeldt 2016a, Eigenfeldt 2016b), and have become their main evangelist. 
Although one of the main desires of the musebot project was to provide a col-
laborative framework that allowed sharing of ideas and code, I have found the 
need to move forward independently. In doing so, I hope to not only create inter-
esting and valuable artworks, but, through their documentation, I hope to entice 
others to join me in the development and extension of the musebot paradigm.

2. MUSICAL AGENTS AND MUSEBOTS

The potential of agent-based musical creation was explored early in the history 
of computer music (Wulfhorst et al. 2003, Murray-Rust and Small 2006), spe- 
cifically in their potential for emulating human-performer interaction. The au-
thor’s own initial investigation into multi-agent systems is described elsewhere 
(Eigenfeldt 2007). Within MuMe, the established practice of creating autonom- 
ous software agents for free improvised performance (Lewis 1999) has involved 



184 idiosyncratic, non-idiomatic systems, created by artist-programmers (Yee-King 
2007, Rowe 1992). While musical results from these systems can be appreciat-
ed by other composers, sharing research has been difficult, due to the lack of 
common approaches (Bown et al. 2013). 

Musebots are pieces of software that autonomously create music, collabora- 
tively with other musebots. Musebots were designed to alleviate some of these is- 
sues, as well as provide a straight forward infrastructure for development (Bown 
et al. 2015). A defining goal of the musebot project is to establish a creative plat-
form for experimenting with musical autonomy, open to people developing cut-
ting-edge music intelligence, or simply exploring the creative potential of gen-
erative processes in music. The musebot protocol is, at its heart, a method of 
communicating states and intentions, sending networked messages established 
through a collaborative document via OSC (Wright et al. 1997). A Conductor 
serves as a running time generator, as well as a hub through which all messages 
pass. The Conductor also launches individual musebots via curated ensembles.

Musebot ensembles have been presented as continuous installations at a varie- 
ty of festivals and conferences, the results of which have been described else-
where (Eigenfeldt et al. 2015). These ensembles have modeled improvisational 
explorations, albeit with the potential for generative harmonic progressions. Cu- 
ration of ensembles have consisted of combining musebots based upon their 
musical function (i.e. a beat musebot, a bass musebot, a pad musebot, a melody 
musebot, and a harmony generating musebot). A contrasting ensemble might 
involve combining several noise musebots (see table 1).

The information shared between musebots have tended to be surface details, 
such as a current pool of pitches, density of onsets, and volume. Although having 
virtual performers audibly agree upon such parameters suggests musically suc-
cessful machine listening, these levels of interaction become mundane surpris-
ingly quickly; the more subtle interactions that occur in human improvisation 
ensembles, and their development over time, have not yet been successfully mo- 
deled within musebot ensembles. 

Several musebot developers participated in ProcJam 15 , and devoted a week 
to exploring the potential for musebots to broadcast their intentions for the im- 
mediate future. While the results heightened the perception of machine listening, 
they were not able to move beyond the generation of musical surface.

2.1. From Self-Organisation to Composition
 

My own hesitation to more deeply embrace improvisational approaches has to 
do with my training as a composer; compositional thought suggests a top-down 

Table 1
Musebot types available 
online (http://musical
metacreation.org/muse
bot-test-suite/)

http://musicalmetacreation.org/musebot-test-suite/
http://musicalmetacreation.org/musebot-test-suite/
http://musicalmetacreation.org/musebot-test-suite/


185 approach, a pre-performance organisation in which musical structure elicits lar- 
ge scale change. Traditional narrative and dramatic musical forms, based upon 
tension and release, result in hierarchical structures that are seemingly impos-
sible to negotiate or self-organise. For example, getting agents to agree upon a 
central section (i.e. a chorus), and deciding how to progress towards that section 
through an adequate build of tension without a top-down approach, is beyond 
my comprehension. While I have explored the use of pre-generated structural 
templates (Eigenfeldt and Pasquier 2013), I found this unnecessarily restrictive 
outside of the exact model considered (i.e. electronic dance music).

I have proposed an alternative to traditional narrative structures for musical 
generation (Eigenfeldt 2016b), specifically what Stockhausen called Moment- 

-form (1963). Kramer suggests that such non-teleological forms had already been 
used by composers such as Stravinsky and Debussy (Kramer 1987), while I have 
described the use of Moment-form in ambient electronic music (Eigenfeldt 2016b). 
Moment-form offers several attractive possibilities for generative music, inclu- 
ding the notion that individual moments can function as parametric containers.  
Just as Stockhausen obsessively categorised and organised his material (Smalley 
1974), the parameterisation of musical features by applying constraints upon the  
generative methods can delineate the moments themselves.

3. MOMENTS

Moments is my first generative work that explores Moment-form in generative 
music through the use of musebots. While the work may have future musebots 
contributed by the MuMe community, thus far all musebots for Moments have 
been my own. Moments exists in two separate versions: the original for two Dis- 
klavier pianos (hereafter referred to as M2016), in which musebots send MIDI 
data to the mechanical pianos; a second version in which it generates all audio 
through Ableton Live (hereafter referred to as M2017). When describing con-
sistent elements between the two versions, I will refer to it simply as Moments. 
Due to the use of acoustic instruments, M2016 has been presented as a live 
concert work; M2017, lacking any visual element, has been presented as an au- 
dio installation.

3.1. Structural Musebots

As mentioned, musebots have demonstrated the potential to self-organise. How-
ever, a decision was made to approach Moments compositionally, and generate 
an entire musical form prior to each performance. This allows for at least one 
important benefit: a pre-cognition by all agents of the upcoming structure. Know- 
ing a section is, for example, two minutes in duration, allows musebots to plan 
their activity within that time. 

Moments uses structural musebots, which do not actually generate sound, as 
well as those that generate audio directly, or via MIDI. A ParamBOT generates 
sections (moments) within a user determined compositional duration. Kramer 
suggests that proportional relationships between moment durations are integral 
to their success, because global coherence cannot come from progression be- 
tween, or order of, moments (Kramer 1978). Adhering to Stockhausen’s own 
preference for golden ratio relationships, durations are generated by continu-
ally dividing the requested performance duration using ratios of 2:3 (see figure 



186 1), ensuring that the longest section is less than three minutes, and the shortest 
is more than fifteen seconds. These durations are then shuffled to avoid predict-
ability, and allow for shorter moments to adjoin longer moments.

In order for moments to be contrasting, each moment consists of varying pa- 
rameter levels. Sectional values, either stable or dynamic during a section, are 
generated stochastically for the following parameters: speed (tempo), activity 
 level (number of events), voice density (number of voices per part), complexity, 
and volume. Pitch is treated differently between the two versions: figure 1 dis-
plays the varying pitch range suggestions used in M2016, while M2017 employs 
a more complex timbral model, discussed later.

Because harmony should remain static within a moment, a single pitch class 
 set is generated for the entire composition by a PCsetBOT. Subsets of the larger 
set are selected for various moments, based upon the section’s complexity, as 
suggested by the ParamBOT. The PCsetBOT broadcasts the pitch class sets for 
the entire composition, thereby allowing musebots to navigate through sectional 
divisions.

3.2. Performance Musebots

As with all of my multi-agent systems, individual agents have a unified general 
design, but operate differently based upon internal variations due to varying at- 
tributes; these attributes function very much like personalities (Eigenfeldt and 
Kapur 2008). In the case of Moments, these attributes are:

• Impatience: how long an agent is willing to be inactive;
• Persistence: how long an agent will stay active;
• Vitality: how willing an agent is to add other voices, and how  
active to be overall;
• Consistency: the amount of variation an agent will attempt,  
including the potential to play across sections;
• Compliance: how willing an agent is to restrict itself to the 
ParamBOT’s requests;
• Repose: a preference to perform in sparser, or denser, sections.

Fig. 1
A portion of the 
ParamBOT, displaying  
the request for a ten  
minute composition’s 
speed, activity level,  
and pitch range. 
Vertical lines indicate 
the five section divisions; 
horizontal lines indicate 
parameter change  
over time.



187 These internal attributes can be set randomly with each performance, or through 
an ensemble score, discussed later. While the ParamBOT determines many of 
the governing parameters for a section, musebots still must decide upon how to 
interpret these suggestions. Earlier musebot designs consisted of a large num- 
ber of individual musebots that behaved in a consistent manner, or style. For 
Moments, it was deemed more practical to design a single musebot that could 
react in different ways depending upon the given musical parameters. Thus, the 
M2016 musebots are provided with a variety of performance styles, and they 
select from these styles based upon their suitability for the current state. For 
example, a narrow pitch range rules out large intervalic chordal playing styles, 
while fast speeds rule out rapid repeated notes. 

The playing styles for M2016 are:

• pointillist: stochastic pitch, onset, and duration selection within the 
requested constraints;
• désordre: based upon Ligeti’s Piano Etude #1, a study in polyrhythms 
and contrasting left / right hand pitch fields;
• blocky: five to ten note chords;
• morse: a rhythmic motive, favoring a limited number of pitches;
• arpy: large intervalic leaps, traveling up and down the keyboard;
• trills: alteration of two or three pitches;
• remembering: florid melodic shapes in groupings based upon a repeat-
ing rhythmic pattern;
• keith: rhythmic repetition in left hand of limited pitch sets;
• herbie:  held chords in left hand, and complex melodic trajectories in 
right hand;
• olivier: “blue green” chords reminiscent of Messiaen’s Vocalise from 
his Quartet for the End of Time.

A fundamental aspect of musebots is their ability, and requirement, to com- 
municate their current state through messages. Rather than broadcast their per-
formance style, the M2016 musebots analyze their own playing, and transmit a 
feature analysis (see figure 2). The other musebot then attempts to match these 
features to what it understands about its own playing styles, and has the option 
of switching its current style. While both musebots share the same stylistic ana-
lysis — and thus should be able to translate the current features into actual 
sty-les — the decision was made to allow for misinterpretation of the other muse-
bot’s style based upon its transmitted features. 

Fig. 2
Musebot self-analysis.



188 In other words, what the musebot believes it is doing may not be what the 
musebot is actually doing. This ambiguity is exploited in M2016, in that the muse- 
bots will attempt to match one another’s playing, based upon their own internal 
beliefs, creating variation within a given moment.  

Given the wide variety of possible states for each moment, as suggested by 
ParamBOT and interpreted by the two musebots in M2016, each moment is 
usually quite distinct while retaining sectional consistency. Changes between mo- 
ments display Kramer’s notion of discontinuity. 

3.3. Translating Musebots

Between July and December 2015, M2016 was performed three times in con-
cert, each with a ten minute duration. While presenting generative works in con- 
cert is always risky — there is never a guarantee that musical agents will pro-
duce optimal output within a set duration — the structure of Moments enforces 
variety between a moment’s consistency and discontinuity between adjacent sec- 
tion, producing a satisfying balance between moderate predictability (due mainly 
to the musebot’s limited number of playing styles) and surprise (due to the com-
plexity of the overall system). Thus, it seemed natural to take the next step, and 
eliminate the constraints placed upon timbre, and have the system entirely deter-
mine how it sounded. 

All of my generative systems, when creating their own audio, have had severe 
limitations placed upon their timbral output: in most cases, they have been for- 
ced to choose from a pre-determined collection of samples or synthesis patches. 
While one could argue that, given five musebots choosing from synthesis col-
lections of five patches each, the potential combination of timbres is quite large, 
the main reason for the constraint is to guarantee some level of predictability 
and musical success. M2017 would attempt to remove this constraint, and select 
from over 1,200 sounds available in Ableton Live.

3.4. Patch Analysis

In order to create generative methods for timbral selection, the system requi- 
res some knowledge about the library of available sounds. A machine learning 
algorithm was created to analyze every synthesizer patch in the Ableton Live 
library. A script was written to play every patch @ MIDI notes 36, 60, and 84; 
analysis was done on the amplitude and spectrum over a five second duration.

Space does not permit a detailed description, other than to state that the re- 
sulting database allowed for requests to be made (see table 2) in order to pro-
vide a sorted list of appropriate patches. For example, a musebot could request 
a list of sustained patches (sustain = 1.0) with medium release (release > 0.5), a 
clear harmonic spectrum (harmonic >0.9), fewer harmonics (harmonic < 0.2), 
and not very much timbral change (flux < 0.2).

Table  2
Machine learning and pos-
sible patch requests 
in M2017.



189 3.5. Spectral Models

Due to the homogeneous nature of the piano timbre across its pitch range, M2016 
could exploit a stochastic pitch range request. The aesthetic model of that work —  

— 20th century piano music — further allowed for such generation. 
M2017 instead uses a model of ambient electronica, requiring pitch selection 

that incorporates spectrum. Twenty five tracks of ambient electronica, by Chris-
topher Bissonnette, Loscil, and Marsen Jules were analysed using 24 band Bark 
analysis (Eigenfeldt and Pasquier 2010), once per second. Spectral slices were 
stored in a database; those that were below the track average (i.e low ampli-
tudes usually found in fade-in and fade-out), as well as those that were similar 
to existing slices, were discarded. Analysis of 25 tracks resulted in 670 unique 
spectral slices.

The ParamBOT selects two slices at random from the spectral slice database, 
then generates  interpolations between them, the number of which depends upon 
the number of sections for a new composition. These new spectral slices are 
then shuffled, and are considered the spectral targets for each section. The sli- 
ces can be considered “real-world” models; the interpolations provide enough 
variation in timbre between sections, yet enough consistency so as to maintain 
the perception of a single musical composition.

3.6. Design versus reality: heuristics at play

Using the request system to determine suitable timbres did not, unfortunately, 
prove to be musically dependable. This may have been due to what the ma- 
chine-learning algorithm was tasked with learning, or it may have been due to 
the ambiguity of information given to the selection algorithm. For example, as- 
ked to provide timbres suitable to be used as drones — sustained, harmonic, 
with enough timbral flux to remain sonically interesting — the system could sug- 
gest very plain timbres (i.e. a bassoon) or unsuitable (i.e. a dance-synth patch 
with a dramatic vibrato). Other examples included selecting sample-based pa- 
tches at the extremes of their pitch range that resulted in audible loops, or 
combing two timbres that would both be considered “foreground”, and thus 

Fig. 3
Bark analysis of Bisson-
nette’s A Wild Tonic in  
the Rain. Brightness indi-
cates higher amplitude  
for that Bark band.

Fig. 4
A spectral slice from Bis-
sonnette’s A Wild Tonic in 
the Rain, displaying ampli-
tudes of 24 Bark bands for 
a one second period.

fr
eq

ue
nc

y 
(2

4 
Ba

rk
 b

an
ds

)

time

frequency (24 Bark bands)

am
pl

itu
de



190 detracting from one another. These problems could be solved by further refi- 
nement of the audio features in the analysis, but it seems that this problem bor- 
ders upon computational aesthetic judgement: attempting to distinguish why cer- 
tain timbres could, or could not, be used in certain circumstances.

As a composer, rather than a computer scientist, I feel such research is beyond 
my immediate goals. Other, more “brute-force” methods would include com-
piling a list of unusable patches, but such a method defeats the purpose of auto-
mating the timbre selection. Lastly, attempting to adjust the timbre once a selec-
tion is made (i.e. altering the filter cut-off or vibrato) is problematic, as each 
patch in the Ableton Live database consists of a variety of synthesis methods 
and algorithms: creating a secondary database of available synthesis parameter 
settings for each patch does not seem to be an elegant solution (for now).

Instead, two additional audio musebots were created, whose timbre could be 
more precisely controlled. A resonant sample-based player (KitsilanoBot), with 
a library of field recordings and soundscapes, was created, in which the indi-
vidual resonant frequency bands is tuned to match the section’s pitches and 
overall spectrum (described below). An “intelligent” granular synthesis player 
(GenoaBot) was also coded, and provided with a large library of instrumental 
samples; sample-selection is based upon the overall timbre of the section, guar-
anteeing suitable and consistent timbral performance in every frequency range. 
The Ableton Live synthesis musebots (LondynBots, SienaBots), utilize the request 
system, and can safely serve as foreground timbres. Similar to the initial musebot 
installations, ensembles were created so as to provide variety between compo-
sitions, including the possibility of specifying individual musebot attributes (see 
table 3).

3.6. Design versus reality: heuristics at play

Because all parameter information, including spectrum, is generated and com-
municated prior to the performance, the audio musebots can negotiate which 
bark bands they will individually cover for individual sections. This negotiation is 
preceded by deciding within which section musebots will be active, based upon 
the section’s activityLevel (broadcast by ParamBot), balanced by an individual 
musebot’s vitality. Musebots broadcast this information as intentions, and other 
musebots can alter their own plans based upon this shared information.

During the extensive listening to generated output for the earlier M2016, it 
seemed that a musebot’s compliance attribute could be used to obfuscate the 
ParamBot’s requests; in other words, allowing musebots some flexibility in res-
ponding to the overall structural parameters. One example of this in M2017 can 
be seen in the “claiming” of Bark bands: if a musebot broadcasts its intention 
to play in bark band 3 (MIDI notes 55-62), no other musebot would be allowed 
to use those pitches. However, when it comes to deciding which pitches to play 
from within its intended bark bands, musebots with low compliance attribute 
can wander outside their limits. This necessitated further communication to the 

Table 3
Audio Musebots  
in Moments2017



191 ensemble: not just what a musebot intends to do, but what it is actually doing. 
A similar adjustment is required during performance when a new section be- 
gins. Due to the complexities of negotiation, it is possible for a section to occur 
in which no musebots are active. Musebots with high compliance attributes are 
the first to test this case; if they find no other musebots active, they test their 
own vitality attribute — essentially a musebot’s energy level  — to see if it should 
play in the section. Because there is no guarantee that a musebot exists with 
high compliance and high vitality, there remains the possibility for a section’s 
continued silence. Rather than overriding this possibility, this result, however 
unlikely, is allowed to exist in order to avoid the creation of a collection of heu-
ristic settings that limits the explored space; or, as was suggested to me, differ-
entiating between fixing mistakes and allowing unintended intentions (which may 
be interpreted as surprise).

4. CONCLUSION AND FUTURE WORK

Musebots offer a flexible method for designing musical agents, but their suc-
cessful implementation requires an iterative process no different than more tra- 
ditional modes of artistic creation. Just as one cannot expect to combine a ran- 
dom assortment of human musicians into a functioning musical ensemble, mu- 
sebots need to be designed, and redesigned, in order to perform adequately 
within a specific musical environment. Just as musicians may rehearse to achieve 
their best — and arguably predictable — performance, fine tuning musebots so 
as to limit their output to best match the aesthetic aims of a generative work 
remains a necessity.

M2016 demonstrates the potential for moment form as a structural contai- 
ner for generative procedures, and a means for musebots to generate surface 
features while being constrained by formal elements. M2017 demonstrates the 
potential to apply metacreative procedures to timbral organization; however, a 
great deal remains to be done in this regard. Paramount is an extension of the 
notion of intention versus actuality: a musebot may claim certain timbral bark 
bands, for example, but its actual timbre may be much greater. For the muse-
bots to know exactly what they are producing, audio analysis of their own output 
will be required. Whether this is done by individual musebots, or by a structural 
musebot “listener” which then transmits current states and required adjustments, 
remains a research foci. 
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